首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10898篇
  免费   927篇
  国内免费   1189篇
化学   4281篇
晶体学   129篇
力学   1112篇
综合类   99篇
数学   1462篇
物理学   5931篇
  2024年   10篇
  2023年   113篇
  2022年   122篇
  2021年   175篇
  2020年   206篇
  2019年   192篇
  2018年   184篇
  2017年   278篇
  2016年   367篇
  2015年   327篇
  2014年   536篇
  2013年   987篇
  2012年   551篇
  2011年   867篇
  2010年   678篇
  2009年   758篇
  2008年   754篇
  2007年   801篇
  2006年   664篇
  2005年   565篇
  2004年   498篇
  2003年   430篇
  2002年   415篇
  2001年   311篇
  2000年   321篇
  1999年   243篇
  1998年   224篇
  1997年   181篇
  1996年   142篇
  1995年   170篇
  1994年   150篇
  1993年   134篇
  1992年   111篇
  1991年   92篇
  1990年   59篇
  1989年   61篇
  1988年   51篇
  1987年   34篇
  1986年   30篇
  1985年   32篇
  1984年   28篇
  1983年   15篇
  1982年   34篇
  1981年   18篇
  1980年   24篇
  1979年   10篇
  1978年   10篇
  1976年   14篇
  1974年   6篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Diffusion processes can be followed directly by recording one-dimensional images of a selected slice at variable intervals after selective inversion of the magnetization. The resulting diffusion coefficients of H2O and DMSO are consistent with earlier studies at different temperatures, obtained by monitoring the attenuation of NMR signals as a function of the gradient amplitude in gradient echo sequences.  相似文献   
2.
The interest in the low energy self-emulsification techniques has exploded in the recent years, driven by three main trends: by the transition to “greener” technologies in both its aspects—less energy consumption and replacement of the petrochemicals by natural ingredients; by the costly and maintenance demanding equipment for nanoemulsification; and by the quest for efficient and robust self-emulsifying formulations for oral drug delivery. Here, we first present a brief overview of the main known low-energy methods for nanoemulsion formation, focusing on their mechanistic understanding and discussing some recent advances in their development and applications. Next, we review three conceptually new approaches for self-emulsification in chemical technologies, discovered in the last several years. The colloidal features and the specific requirements of the self-emulsifying drug-delivery systems (SEDDS) are also discussed briefly. Finally, we summarize the current trends and the main challenges in this vivid research area.  相似文献   
3.
Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO2 to produce alkene and HO2is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO2 decomposition is larger than that of the isomerization of RO2 to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.  相似文献   
4.
5.
6.
7.
High pressure can effectively control the phase transition of MoTe2 in experiment, but the mechanism is still unclear. In this work, we show by first-principles calculations that the phase transition is suppressed and 1T phase becomes more stable under high pressure, which originates from the pressure-induced change of the interlayer band occupancies near the Fermi energy. Specifically, the interlayer states of 1T phase tend to be fully occupied under high pressure, while they keep partially occupied for the Td phase. The increase of the band occupancies makes the 1T phase more favorable in energy and prevents the structure changing from 1T to Td phase. Moreover, we also analyze the superconductivity under high pressure based on BCS theory by calculating the density of states and phonon spectra. Our results may shed some light on understanding the relationship between the interlayer band occupancy and crystal stability of MoTe2 under high pressures.  相似文献   
8.
The gravitational Szekeres differential system is completely integrable with two rational first integrals and an additional analytical first integral. We describe the dynamics of the Szekeres system when one of these two rational first integrals is negative, showing that all the orbits come from the infinity of R4 and go to infinity.  相似文献   
9.
The diffusion of polymer chains in miscible polymer blends with large dynamic asymmetry—those where the two blend components display very different segmental mobility—is not well understood yet. In the extreme case of the blend system of poly(ethylene oxide) (PEO) and poly(methyl methacrylate)(PMMA), the diffusion coefficient of PEO chains in the blend can change by more than five orders of magnitude while the segmental time scale hardly changes with respect to that of pure PEO. This behavior is not observed in blend systems with small or moderate dynamic asymmetry as, for instance, polyisoprene/poly(vinyl ethylene) blends. These two very different behaviors can be understood and quantitatively explained in a unified way in the framework of a memory function formalism, which takes into account the effect of the collective dynamics on the chain dynamics of a tagged chain. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1239–1245  相似文献   
10.
Kun Tian 《中国物理 B》2022,31(11):114208-114208
Laterally-coupled ridge-waveguide distributed feedback lasers fabricated without epitaxial regrowth steps have the advantages of process simplification and low cost. We present a laterally coupled grating with slots. The slots etched between the ridge and grating area are designed to suppress the lateral diffusion of carriers and to reduce the influence of the aspect-ratio-dependent-etching effect on the grating morphology in the etching process. Moreover, the grating height in this structure can be decreased to lower the aspect ratio significantly, which is advantageous over the conventional laterally coupled ridge waveguide gratings. The effects of five main structural parameters on the coupling characteristics of gratings are studied by MODE Solutions. It is found that varying the lateral width of the grating can be used as an effective way to tune the coupling strength; narrow slots (100 nm and 300 nm) and wide ridge (2 μm-4 μm) promote the stability of grating coupling coefficient and device performance. It is important to note that the grating bottom should be fabricated precisely. The comparative study of carrier distribution and mode field distribution shows that the introduction of narrow slots can strengthen the competitive advantage and stability of the fundamental mode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号